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Abstract
 
In this lab assignment which was done in the course TNM079, Modeling and animation, the half-edge 
mesh data structure was implemented, which solves the access to neighboring faces that is lacking from 
an ordinary face- and vertex-list data structure. Because of the ease of getting the neighboring faces 
the calculation of vertex normals was easily implemented as well as methods for calculating the total 
area,volume and genus of the entire mesh were also implemented. Furthermore a naive method for 
calculating the curvature estimate with Gaussian curvature was implemented and it was also improved 
by dividing with the voronoi area instead. Further improvement was made by implementing the mean 
curvature and smoothing was done by moving the vertices's positions according to the mean curvature 
and the vertex normal. A description of how to reduce the half-edge mesh data structure to save memory 
is also presented in this report and what benefits and disadvantages it will bring.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction
 
This lab was done in the course TNM079 Modeling and animation in spring 2011. The aim of the lab 
was to implement the half-edge mesh data structure and also implement methods for calculating  meshes 
surface area, volume, genus and curvature. Getting the neighboring vertices and faces is often needed 
during calculations for example calculating the vertex normal or the curvature estimate, which both needs 
all its neighboring faces. The half edge data structure is very successful at retrieving information about 
the neighboring faces, which makes it a very attractive and useful data structure for meshes. The half edge 
data structure also handles large meshes much better than a simple mesh data structure. 

2 Method
 
The lab assignments were graded with stars and assignments with one star, (*), was mandatory  in order 
to pass the lab. One assignment with two stars (**) had to be completed to get a grade four and for grade 
five one needed to pass the requirements for grade four and also complete a assignment with three stars 
(***). Here follows all the completed assignments:
 
2.1 Implement the half edge mesh (*)
 

Figure 1. The half edge data structure. Image courtesy of  [1]
 
Because the lack of neighboring face access in a simple mesh data structures, this half edge mesh data 
structure was implemented. For each vertex there is a half edge pair-, next- and previous- pointer and 
also the left face is stored. So to move around a face one uses the next and previous pointers and to go to 
the right face, the half-edge pair is used which is  an inner,solid blue arrows, and outer edge, dashed blue 
arrows, connected by pointers, see figure 1. 
 
 



The half edge data structure was implemented in HalfEdgeMesh.cpp, and here follows the things that 
needed to be done to implement the half edge data structure.
 
1. Firstly one needs to associate the three vertices to the face, with the AddFace function. The vertices 
is added to the vertex list mVerts if and only if they are unique and the AddVertex function returns the 
index of the found or newly inserted vertex. 
2. Create all the half-edge pairs in the triangle, which was done with the AddHalfEdgePair. The 
addHalfeEdgePair takes in two vertices and returns the index of the half edge pairs.
3. Then connect the inner-ring by assigning the next and previous pointers to the corresponding edges in 
the triangle.
4. The face is then created and the half-edge pair and normal is connected to the face. The normal is 
calculated according to equation 1, where v1, v2 and v3 are the vertices spanning up the face, and then it 
is then normalized.
 

(1)
 
5. Associate all half edge pair to the face because all half edge pair shares the same left face, 
as seen in Figure 1. 
 
2.2 Implement neighbor access (*)
 

Figure 2. The neighboring vertices.

 
To be able to calculate the neighboring faces the neighboring vertices needs to be found first. This is 
done in the function FindNeighborVertices which takes in a vertex index and returns all the neighboring 
vertices which is stored in a vector. This is done from the current vertex (V0), step ahead with the half-
edge next pointer to the ring surrounding the current vertex, see Figure 2. Once out in the ring the only 
thing that needs to be done is to store the vertex index and step ahead with the half-edge next pointer until 
it points to the starting vertex in the ring. 
 



The neighboring faces is done by using this ring of surrounding vertices and check their corresponding 
faces. Because every half-edge stores the left face it is easily retrieved by looping through the neighboring 
vertices and putting all neigboring faces’ indices  into a vector.
 
2.3 Calculate vertex normal (*)

Figure 3. Vertex normal and its surrounding face normals.
 

The vertex(nv) normal is calculated according to equation 2, which is the normalized sum of the 
neighboring face normals(nf,), see Figure 3,  where the face normal is calculated as mentioned earlier with 
equation (1).
 
     (2)

 
 
 
2.4 Calculate surface area of a mesh (*)
 
The area of the mesh is the integral over all area segments on the mesh, which can be approximated into a 
Riemann sum of the area of each face/segment area, see equation 3a.
 

   (3a)
  
 

            (3b)
 

The area of the i:th face, A(fi) is calculated as half the magnitude of the cross product between the edges 
in the i:th face, see equation 3b. 
 
 
 



 
2.5 Calculate volume of a mesh (*)
 
The volume of the mesh is calculated by using the divergence theorem, also know as the Gauss 
theorem[2] which gives a connection between the surface- and volume- integral. By integrating over the 
surface, where F is a vector field and n is the unit normal the surface integral can be written as a volume 
integral of the divergence of the same vector field F, see equation 4.
 
 

 (4)
 

 
Because that the vector field F can be set to any vector field, the field can be assumed to have a constant 
divergence gives equation 5. The result is the volume times a constant c.
 
 

          (5)
 
 

The vector field is chosen as    which gives the constant c, a value of 3 [1]. Equation 4 
and 5 can be written into a single equation, see equation 6.
 
 

             (6)

 
The surface integral can be computed by approximating it with a Riemann sum, see equation 7, where 
n(fi) is the face normal and A(fi)  is the area for i:th face. 

 
 (7)

 
 

The vector field     is simply chosen as the centroid of the face where v1, v2 and v3 are 
the vertices spanning up the face, see equation 8. Although the vector field varies over the face in contrast 
to the normal and area which are constant, the vector field can still be approximated at any chosen point 
on the face. 

 
 
 
(8)

 
 
Equation 8 was implemented in the Volume function in the HalfEdgeMesh.cpp to calculate the volume 
of an object. By looping through all faces and summing all the faces according to equation 8, the volume 
was calculated.  



 
2.6 Implement and visualize curvature(*)
 
There are several ways of describing the smoothness of a surface described by curvatures, and the most 
frequent methods used are the Gaussian curvature and mean curvature[1], where the former is composed 
by equation 9. The area A is calculated in the same way as before, see equation 3b.
 

 
(9)

 
 
 
The sum of the angles Θj is calculated according to Figure 4. If the vertex vi lies within the plane or is a 
saddle point the curvature estimate K is zero, because the sum of Θj adds up to 2π. The only way for a 
Gaussian curvature to be negative is if the total the sum of Θj adds up to more than 2π, which can only 
happen if  some of the neighboring vertices are over the vertex vi, like a saddle-shaped mesh for example.

 

Figure 4. Representation of the angles αj, βj, Θj  for the curvature estimate. Image Courtesy of [1].

 
 
 
 
2.6.1 Improve the curvature estimate (**)
 
To better represent the curvature, the area A  in equation 9, is now instead calculated with the voronoi 
area, see equation 10, where αj , βj is the angles seen in figure 4.
 

(10)
 

 
Further improvements can be made, for example calculate the mean curvature which will be discussed in 
section 2.8.
 



2.7 Classify the genus of a mesh (**)
 
The genus of a mesh is calculated using the Euler-Poincaré formula, see equation 11, where V is the 
number of vertices, E is the number of edges, F is the number of faces, L equals the number of loops, S is 
the number of shells and G, is the genus.
 

 (11)
 
For convenience the number of shells is set to 1 and the number of loops equals the number of faces, 
because there only exists one loop within a face, so equation 11 can be reduced to equation 12, and finally 
the genus can be calculated as equation 13 which was implemented in the Genus function.
 

 (12)
 

(13)
 
2.8 Calculate the mean curvature and do smoothing (***)
 
To be able to differentiate between concave and convex curvature, one has to implement the mean 
curvature, because the Gaussian curvature does not take this into account. The mean curvature equation is 
seen in equation 14.
 

(14)
 
 

Equation 14 returns a vector Hn which is 
compared to the vertex normal through scalar product, see equation 15. The area A is the voronoi area 
and the see figure 4 for the summation of the vectors.

 
 

 
   H =   (convex) (15)

                                          (concave)           
 
 
For clarification  about the summation and sign of H, see Figure 5.
 



8
Figure 5. Concave and convex calculation, to the left concave, right convex.

 
The mean curvature estimate is then used to move the vertices in an out- or in-wards direction along the 
vertex normal according to the sign and magnitude of the curvature estimate. This is done with explicit 
Euler intergration [3], which is just to take the previous position and add a small step in the direction of 
the vertex normal according to the curvature estimate, see equation 16.
 

(16)
 
2.9 Present a lower memory bound for the half-edge data structure (***)
 
The half-edge data structure has some information that can be reduced in order to save memory.
In listing 1. the structure of the entire half-edge mesh data structure is seen. 
 
 
 
 
 



Listing 1: Half-edge data structure.
struct Face ;
struct Vertex ;
 
struct Halfedge{/ / topology

Vertex* vert ;
Halfedge* next ;
Halfedge* prev ;
Halfedge* pair ;
Face* left ;

};
struct Vertex{/ / geometry

float x , y , z ;
Halfedge* edge ;

}
struct Face{

HalfEdge* edge;
};
struct Mesh{

Vertex verts [ V ] ;
Face faces [ F ] ;
Halfedge edges [3 F ] ;

} ;
 
Assuming that a float takes 4 bytes and , the entire half-edge data structure gives us according 
to equation 17, 72F.
 

 
 
(17)

 
 
 
 
Some reduction can be made in the topology. The previous pointer is the same as to take next->next so 
the topology could be reduced by 4 bytes by removing the prev pointer. The face can also be constructed 
by the three pointers by getting each vertex, so there is no need to store a face, however no attributes like 
color can be set to a face when doing this. This makes the Faces class redundant as well, which gives a 
reduction of 8 bytes, 4 for the face pointer and 4 bytes for the face class which contained an edge.
 
The size of the vertices is still 16 bytes and the size of the half edge structure  is now 12 bytes, which 
gives a total of 44F. This reduces the memory to ~61 percent of the total memory. However constant 
time neighboring access can not be acquired because the face pointer is removed and the face needs to 
be calculated instead. To be able to have constant neighboring access the face pointer and face structure 
can not be removed,  which makes the size of the half edge structure to 16 bytes and also the Face class 



is no longer redundant which is 8 bytes and therefore gives a total of 60F. The lower memory bound and 
with constant time neighboring access the data structure can be compressed to ~83 percent of the total 
memory.
 
3 Results
 
3.1 Implementation of the half edge mesh
 
The half edge mesh data structure loads in an object a lot faster than the normal vertex- and face- data 
structure. This was not so noticeable on simple meshes but for a large mesh for example the bunny it 
was noticeable, see table 1, for  a comparison between the simple data structure and the half edge data 
structure. The time is only approximate because the time was manually timed and should therefor only 
be looked at as an example of that the half edge mesh is somewhat faster than the simple data structure, 
when it comes to large meshes.
 
Table 1: An approximation of how much faster the half edge mesh is for large meshes.

 Simple mesh data structure Half edge mesh data structure

Stanford Bunny 4.4s* 2.3s*
*Note that it is manually timed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
3.2 Calculate the vertex normal
 

Figure 5. Vertex normals, shown in green and face normals shown in red.
 

The vertex normal is calculated by equation (2) where the neighboring face normals are summed together 
and normalized. Figure 5, shows the calculation of the vertex normals, and if one looks carefully at the 
bottom vertex normal, one sees that the direction of the normal is not totally correct. This is because that 
if there are two or several neighboring faces on one side of the cube and on an other side, the right side 
in the image for example, has a smaller amount of neighboring faces the direction of the normal will be 
slightly tilted in the direction of the side with more neighboring faces. Several different thing can be taken 
into account to get better performance, for example weighting according to the edge lengths, area of the 
face, angles to the neighboring faces. However, this method worked just fine for this purpose.
 
3.3 Calculate surface area and volume of a mesh
 
The area and volume were calculated according to equation 3a, respectively 8. 
By comparing the area and volume of a unit sphere mesh with the calculated area and volume, see 
equation 18, one sees that computed area and volume of the mesh resembles closely the calculated area 
and volume, but it is not exact, see table 2.
 
 

(18)



 
 
 
Table 2: Area and volume calculations for the mesh and calculated from equation 18.

 Mesh Calculation

Area of a unit sphere 12.5048

Volume of a unit sphere 4.14881
 

 
The area and volume of the mesh will converge to the correct value as the number of vertices 
approximating the sphere goes to infinity.
 
3.4 Implementation and visualization of different curvatures
 

 
      Figure 6. Gaussian curvature            Figure 7. Gaussian curvature but, divided by the   

             voronoi area.
As seen in figure 6 and 7 the Gaussian curvature estimate is rather poor, look especially at the bumps in 
figure 6, but by dividing with the voronoi area instead  better smoothing is achieved,see figure 7 and 8.  
There are though still some problems around the poles of the sphere, but it is a lot better.
 



Figure 8. Voronoi Area, Gaussian curvature.

 
Figure 9.Original bunny before smoothing.    Figure 10. Smoothed bunny after many iterations.
 
The mean curvature differentiates between convex and concave curvature, see section 2.8, and with this 
smoothing of the actual mesh can be done. The step in equation 16 was chosen to be a value smaller than 
0.01 for stability. However, the step needed to be very small for the cow mesh, since the cows’ mesh is 
very small compared to all other meshes in the program, and if the vertices area moved when iterated 
with a quite large step compared the the vertices’s positions the new mesh will be very different from the 
original mesh. See image 9, and 10 for mean curvature smoothing.
 
If the mesh is iterated too many times the sharp edges will break, probably because the iteration step 
is too large so the vertex will cross the face and be treated as a concave point instead of a convex point 
which it should have been, or vice versa. This error is seen for example around the ears on the bunny, see 
image 11. 
 



Figure 11. Sharp edge crash
 
3.5 Present a lower memory bound for the half-edge data structure
 
As seen in section 2.9 the memory bound for the half-edge data structure can be reduced to a memory of 
44F bytes instead of 72F bytes. However, when reducing this memory bound the calculation time to get 
the triangles and vertices will increase, so one has to choose either a larger memory bound with greater 
speed or a lower memory bound but with loss of computational speed. If compared to a simple vertex- 
and face list that uses the indices in the face list, the memory is calculated to be 60F compared to the half-
edge mesh that uses 72F bytes. However the half edge data structure is  is a lot faster when it comes to 
large meshes. The half edge data structure can be reduced to 60F,which is the same amount as the simple 
data structure, and still have constant time neighboring access. 
 
4 Conclusion
 
This lab gave a good understanding of the useful half edge mesh data structure and how fast and useful 
it is for geometric calculations such as, the mean curvature estimate, calculation of the surface area and 
volume, genus classification and vertex normal calculation. It was a very good theoretical and practical 
assignment which gave a good and useful understanding of very important parts of mesh data structures 
and curvature estimates.
 
Lab partner and grade
 
The lab was carried out by me, Dan Englesson, and my lab partner Emil Brissman. We implemented all 
mandatory assignments as well as all assignments needed with grade 4, one needed for grade 4, and two 
assignments with grading 5 where only one was needed to be done in order to be able to write for grade 5. 
As stated in the previous sentence me and my lab partner have full-filled the requirements for grade 5.
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