
P O I N T - B A S E D A M B I E N T O C C L U S I O N
TNCG14 ADVANCED COMPUTER GRAPHICS PROGRAMMING

Dan Englesson

Spring, 2011

Abstract

A two pass method for calculating point-
based ambient occlusion was implemented
on the GPU using GLSL and OpenGL, in the
course TNCG14 - Advanced Computer Graph-
ics at Linköping University. The program can
load in wavefront-object files and render them
with point-based ambient occlusion. The re-
sult is a good approximation of a ray-traced
ambient occlusion render but it is rendered
with a greater speed than with a ray-traced
method. A point-based rendering visualiza-
tion method called ”Affinely projected point-
sprites” was implemented and compared with
the normal way of visualizing objects with tri-
angles.

1 Introduction

This project was done in the course , TNCG14
- Advanced Computer Graphics at Linköping
University during spring 2011. The topic of
the project was free to choose so the chosen
topic for this project became Point-based Am-
bient Occlusion because it is being more and
more used in the movie industry to simulate

global illumination and ambient occlusion in
movies with a greater speed than with nor-
mal ray-tracing methods which due to the
long rendering times is rarely used in movie-
productions for global illumination.

2 Background and Related
Works

Point-based global illumination and ambient
occlusion is relatively new in the movie in-
dustry. In 2005 a prototype implementation
of point-based ambient occlusion was imple-
mented by Rene Limberger at Sony Image-
works for the movie Surf’s Up and also a
full point-based global illumination method
was shortly thereafter implemented at ILM by
Christophe Hery and used in the production
of Pirates of the Caribbean: Dead Man’s Chest
[1].

In the book GPU Gems 2 there is a paper
on Dynamic Ambient Occlusion and Indirect
Lighting by Bunnell [2] on the GPU with CG
shaders. It is an iterative approach and uses
hierarchical trees for speeding up the calcula-
tions. The algorithm used in this project was
heavily inspired by this paper but was instead
implemented in OpenGL and GLSL shaders.
Work of this sort has also been done on the
CPU at Pixar [3] which approximates clusters
of distant surfels with spherical harmonics
and for medium-distant surfels a similar disk
approximation method to Bunnell is used, and
for the closest surfels ray-tracing is used.

Some work has also been put on visualizing
the surfels and in this project Affinely pro-
jected point sprites [4] was implemented. It

1

is a simple method and has some flaws when
viewed at a extreme angles but yields good
results. A related approach is EWA (Elliptical
Weighted Average) surface splatting[5] which
is by far the best method to use but it is a
whole project on its own and was therefore
not included in this project.

3 Implementation

The program was written in OpenGL for load-
ing the Wavefront objects and storing the ver-
tices as point-clouds in textures, and then sent
to GLSL for calculations on the GPU. The
method used in this project for simulating
point-based ambient occlusion on the GPU
is a two path method where in the first pass
a point-cloud is generated and in the second
pass the ambient occlusion is calculated. Two
methods for visualizing the point-data was
also compared, it was visualized with trian-
gles or with affinely projected point-sprites.
The comparison between these two methods
for visualization was not the main focus of this
project and will therefor be briefly discussed.

3.1 Pass 1: Generating the point-
cloud

There are several ways of converting a mesh
into a point-cloud, for example Turks point
repulsion algorithm [6] which can be used to
generate an even point-cloud on the surfaces,
or to simply use the vertices’ positions which
is the method used in this project. The vertices
were chosen to be the point-cloud since they
were already there and their normals and area
could easily be calculated, see equation (1)
and equation (2).

Nv = ||
k

∑
i

N f (i)|| (1)

As =
1
3

p

∑
i

1
2
|e1i × e2i| (2)

Nv is the vertex normal which is the nor-
malized sum of the neighboring face normals
N f (i) and As is the area of the surfel which is

one third of the sum of the neighboring faces’
areas which is calculated as half the magni-
tude of the unnormalized normal. Here e1i
and e2i are two edges spanning up the i:th
face.

Every vertex, or for now on surfel, will store
the following:

Listing 1: Surfel structure

s t r u c t S u r f e l {
vec3 p o s i t i o n ;
vec3 normal ;
vec3 area ;
(vec3 c o l o r ; / / f o r GI on ly .)

} ;

All surfel positions are stored in a Tex-
ture Buffer, and their corresponding normal
and area are stored into two separate Texture
Buffers and sent to the fragment shader for
ambient occlusion calculation.

3.2 Pass 2: Ambient occlusion cal-
culation

Ambient occlusion gives darker areas at parts
of the object that is partly visible to the sur-
roundings. It calculates the percentage of the
hemisphere at the point that is not occluded
by nearby surfaces, see figure 1.

Figure 1: Ambient occlusion visualiza-
tion. The vectors occluded are seen as
red arrows, and the vectors not occluded
are seen as green.

Instead of spawning rays at a given point
p over the hemisphere as seen in figure 1, the
point-based method projects all visible surfels
E(i) that lies above the hemisphere on to the
surfel R . Equation (3) describes the ambient
occlusion calculation over almost the entire
hemisphere except for surfels that lie near the
horizon of the same plane which the receiver,R
in figure 2, lies in.

2

os =
k

∑
i
(1− 1√

AE,i
πd2 + 1

)(NE,i · ri)(4∗ (NR · ri))

(3)
The calculated occlusion value os for a given

surfel s is the sum of the all surfels that lies
within the hemispheres’ view weighted ac-
cording to their distance squared d2, the emit-
ters area AE,i, and the angles between the nor-
mal of the receiver and the direction r and the
angle between the emitter and direction r, see
figure 2 for visual comparison.

Figure 2: Ambient occlusion calculation
between two surfels, R is the receiver and
E the emitter that cast shadow onto R.

During this process the bent normal can eas-
ily be calculated by subtracting the directions
of the vectors that are occluded by a nearby
surface, so the bent normal will become the
direction to where it is least occluded, see fig-
ure 3. The bent normal is very useful to simu-
lating global illumination from surfels or en-
vironment maps, which is not included in this
project but it is fairly easy to go from point-
based ambient occlusion to point-based global
illumination. To be able to simulate global illu-
mination with point-clouds, the color of each
point/surfel needs to be stored as well.

Figure 3: Bent normal, the least occluded
direction. The blue arrow is the normal,
and orange is the bent normal.

3.3 Over-occlusion compensation

The resulting ambient occlusion from equa-
tion (3) is sometimes too dark in some areas,
because when calculating the ambient occlu-
sion all surfels are taken into account even
those that are occluded by other surfels much
closer. Therefore surfels receives more surfels
than they should and the result is over-darken
areas, see figure 5(a) in section 4. There are
several methods to reduce this problem, one
method, which is an iterative approach, men-
tioned in [2], is to do the same calculations
as before in equation (3) in a second pass but
for each surfel multiply it with the last ambi-
ent occlusion result calculated for that specific
surfel. After some iterations the result will
look similar to a ray-traced ambient occlusion
result. The more passes the better approxi-
mation. Another way is to scale the ambient
occlusion value by a scale factor to make the
ambient occlusion brighter. However by scal-
ing the ambient occlusion, cracks and tight
corners will also become much brighter when
scaled as well, which is not desirable. Two
methods that takes into account tight corners
and cracks which was mentioned in [4] was
to divide the hemisphere into n patches and
each patch can at most occlude 1/n. The sec-
ond method, which was implemented, attenu-
ates the occlusion from those surfels that are
distant , in other words, a maximum distance
value is set so distant surfels does not con-
tribute. A result of this method can be seen in
section 4, figure 6.

3.4 Visualization of the point-
cloud

Since the point-cloud was generated by the
vertices of an object, one method was to sim-
ply visualize the model with triangles and in-
terpolate the ambient occlusion values stored
at each vertex across the triangle-surfaces.
This was the most straight forward way of
visualizing it and therefore became the stan-
dard visualization in this project. An other
method implemented for comparison was
affinely projected point sprites [4] which is

3

a splatting technique used to project the sur-
fels onto the screen according to its normal
and area. This was done by using OpenGL’s
point-sprites which gives view-spaced aligned
squares with their centers at its vertex posi-
tion pi. A depth offset dz from the center pi
to a pixel (x,y) on the point-sprite, that is r · r
in size, where r is the radius, can be calcu-
lated with the linear equation in equation (4),
where n = (nx, ny, nz)t is the vertex normal
transformed to camera-space.

dz = −nx

nz
x−

ny

nz
y (4)

To be able to render the point-splats as el-
lipsoids one had to check if the pixel (x,y) lay
within the given radius r by calculating the 3D
distance to the center,||(x, y, dz)|| ≤ r. If the
pixel lay outside the radius it was killed with
the comand discard in GLSL. The result was
surfels that looked like they were following
the curvature of the object according to the ver-
tex normal, see figure 8 and figure 9 in section
4 for a visual comparison of the point-sprites
and affinely projected point-sprites.

Since the size of each point-sprite in
OpenGL is defined according to the pixel size
on the screen, the surfels looked like they be-
came larger when zooming out from the object.
By taking the position of the camera into ac-
count the size of the surfels could stay true
to the object instead of growing when zoom-
ing out. Equation (5) shows how to calculate
the size of the surfel that does not vary when
viewed from different distances.

ssize = R
hw

||c− p|| (5)

Where R is the radius of the surfel, hw is the
height of the window, c is the camera position
and p is the surfel position. Basically the de-
nominator is the z-depth value of the surfel.

4 Results and Performance

Here follow some results of the point-cloud
renderer and performance benchmarks. Dif-
ferent results of over-occlusion are presented
as well as a visual comparison between the
point-sprites used in OpenGL, the affinely pro-
jected point-sprites rendering technique and
the straightforward way of rendering trian-
gles.

Figure 4: Rendered result of the point-
based ambient occlusion method, ren-
dered with triangles.

Figure 4 show a typical rendered frame
from the program, rendered with triangles.

4.1 Over-occlusion compensation

In figure 5(a), on the next page, the ambient oc-
clusion is somewhat over-occluded. By reduc-
ing the amount of occlusion by scaling it with
a constant value smaller than 1, the ambient
occlusion render gets brighter. It gives quick
and good results at 40-60 percent of the origi-
nal ambient occlusion value, see figure 5(c),(d).
However it reduces the amount of occlusion
everywhere not taking into account corners
and cracks that should still stay dark. Com-
pare especially the small pebble at the right
foot in figure 5(c)(d) and figure 6 which is
rendered by not taking into account distant
surfels. One can see that the pebble in figure 6
has darker shadows beneath it than in figure 5.
The shadows at the feet are more distinct in
figure 6 than in figure 5 where they are more
soft.

4

(a) (b) (c) (d)

Figure 5: Different amount of ambient occlusion applied to the surfels. In (a) the amount of
ambient occlusion is the raw ambient occlusion value that is obtained from equation (3), (b) is 80
percent of (a), (c) is 60 percent of (a) and (d) is 40 percent of (a).

(a) (b)

Figure 6: over-occlusion reduction ap-
plied by having a distance threshold. (a)
distance threshold(th), th = 1.99 and (b)
th = 0.99

A combination of both can be suitable as
well to lighten up dark areas such as cracks
and corners that are too dark. Figure 11 shows
the hybrid method in (a), and in (b) the dis-
tance attenuation method was only used. The
distance was set to 2.0 in both images where
in (a) the ambient occlusion value was scaled
by 0.5 and in (b) the ambient occlusion value
was not scaled. Note the dark areas in (b) is
brighter in (a).

(a) (b)

Figure 7: (a) A hybrid of scaled occlusion
and distance attenuation. In (b) only dis-
tance attenuation with the same distance
as in (a).

4.2 Affinely projected point-sprites

By comparing the OpenGL point-sprites in fig-
ure 9 with the Affinely projected point-sprites
in figure 8 one can clearly see the difference
in these two images. The Affinely projected
point-sprites visualizes the spheres much bet-
ter than the ordinary point-sprite method in
OpenGL, especially at the contours. However
the images are taken from the same angle, but
the floor is missing in figure 8. This is due
to the fact that equation (4) is a parallel pro-
jection, which does not take into account the
angle between the splat normal and the view

5

Figure 8: Affinely projected point-sprites,
note the roundness of the point-sprites
and how they follow the spheres curva-
ture.

ray and therefore the splats becomes too thin
and will not be rendered when viewed at ex-
treme angles.

Figure 9: OpenGL point-sprites, visualiz-
ing two spheres and a ground-plane

In figure 10 the Rex model is visualized with
the affinly projected point-sprites method.
With some additionally Phong- or Gouraud-
shading the model would look quite good,
because now the sprites does not blend with
each other so one can see distinct surfels.

In figure 11(a) the rex model is rendered
with the triangle method, and in figure 11(b)
the model is rendered with affinely projected
point-sprites. However in figure 11(b) the size
of the point-sprites had to be reduced in order
to be able to render. It is due to the fact that
the size of point-sprites can not be too large
because the a larger point-sprite the more fill-
ing has to be done in the fragmentshader. A
more complex model can be rendered with
point-sprites if the radius of each point-sprite
is reduced. A more detailed investigation of

Figure 10: Affinely projected point-
sprites, visualizing the REX model.

these two methods is performed in section 4.3,
were benchmarks is made according to the
radius, and number of vertices.

(a) (b)

Figure 11: (a) Rendered with triangles (b)
Rendered with affinely projected point-
sprites

4.3 Performance

Figure 12: A graph over how the frames
per second is affected only by the point-
sprite radius

In figure 12 one can see how the radius af-
fects the frames per second as the radius of the
splats are increased. It shows that the frame

6

rate drops dramatically just by increasing the
radius by a small number. This is a huge bot-
tleneck, since the splats needs to be quite big
to fill the entire object. To reduce this problem
one can have more points but a smaller radius.
However by increasing the amount of vertices
the frames per second drops by itself a lot, see
Table 1. In Table 1 the radius stays the same
but the amount of vertices are increased as it
is rendered with ambient occlusion on.

Table 1: A comparison between the
amount of vertices rendered with trian-
gles and with affinely projected point-
sprites

Vertices Triangles point-sprites
(fps) (fps)

81 200 200
289 142 200
1089 36 26
4225 6 2

16641 0.48 0.1

Figure 13: A graph over how the frames
per second is affected by the amount of
vertices in the scenen.

Figure 13 is a plot of Table 1 and with Table 1
combined it shows that the fps decreases dras-
tically when increasing the amount of vertices
when ambient occlusion is turned on. It also
show that rendering it with triangles gives a
little more fps, but they do follow each other
closely. However when rendering with the
point-sprites the radius needs to be bigger to
cover all the area of the object. This will re-
duce the fps even more when point-sprites are
used. A comparison between rendering with
triangles and rendering with affinely projected
point-sprites that has a radius that cover the

entire surface is shown in Table 2 for different
amount of vertices.

Table 2: A comparison between the surfel
radius and the amount of vertices ren-
dered with triangles and with affinely
projected point-sprites

Vertices Triangles point-sprites radius
(fps) (fps)

81 200 30 0.46
289 142 7.3 0.24
1089 36 1.7 0.12
4225 6 0.37 0.06

16641 0.48 0.1 0.03

Table 2 clearly states that the affinely pro-
jected point-sprites can not be compared to
the triangle method since the difference in
frames per second has a mean difference value
of about 69 frames per second, which is quite
a lot.

4.4 Comparison between my ren-
derer Iris, and Blender 3D’s ren-
derer

(a) (b)

Figure 14: (a) Rendered with Iris, 11s (b)
Blender internal with ray-traced ambient
occlusion, 20s

The open-source program Blender 3D has
also implemented point-based ambient occlu-
sion and has as well ray-traced ambient occlu-

7

sion. The test was performed on a ASUS G53S
with a four core Intel i5 processor and Geforce
GTX 460M as graphic-card. In figure 14(a) the
viking model was rendered with Iris, and (b)
was rendered with Blenders’ ray-traced inter-
nal renderer with 16 samples. The viking in (a)
took 11 seconds to render and (b) took 20 sec-
onds to render without any anti-aliasing for
only ambient-occlusion comparison. Blenders
internal renderer works only on CPU, but it is
threaded. Figure 14(a) approximates the ray-
tracing method quite well, but can be tweaked
even further to resemble (b).

Table 3: A comparison between the my
render Iris, and blender’s internal ren-
derer that both has ray-traced and point-
based ambient occlusion.

Iris Blender Blender
point-based ray-traced point-based

1pass/2pass
11s 20s 10s/40s

Table 3 shows the time it took to render
the viking with ambient occlusion in Iris and
Blender internal with ray-tracing and with
point-based ambient occlusion. One sees that
the blender renderer with one pass of point-
based ambient occlusion is faster than the one
rendered with Iris and is still computed on the
CPU and not with the GPU. Probably or most
certainly an octree data structure is imple-
mented in Blender to reduce the calculations
from n2 to nlog(n) which gives a huge differ-
ence in computational time, see figure 15.

Figure 15: A graph over the computa-
tional time it takes for a n2, seen in red,
and a nlog(n) system, seen in blue.

5 Conclusion and Future
work

The point-based ambient occlusion approach
approximates a ray-traced method quite well
and at a greater speed than a ray-traced
method, see figure 14 and Table 3. Al-
though the rendering time is compared with a
threaded ray-traced renderer on the CPU with
this rendering method on the GPU, conclu-
sions can still be drawn that the this method
still renders faster than the threaded ray-
traced method on CPU with an octree data
structure, which means that it would outper-
form the ray-tracing method if an octree data
structure was implemented. Creating an oc-
tree data structure for all surfels would be the
most significant speedup which will reduce
the calculations from n2 to nlog(n) and there-
fore the most important part to implement
next in the future. An other performance boost
would be to implement Vertex-buffer objects
(VBO) so it is directly uploaded to the VRAM.
Since the size of the surfels when rendering
with affinely projected point-sprites is a big
bottleneck when it comes to performance, see
figure 12, the best idea would be to increase
the amount of surfels an reduce the radius to
cover the entire object, the ratio in fps between
the triangle visualization and the point-based
is reduced when the radius gets smaller and
the amount of vertices increases, see Table 2.

Two more over-occlusion reduction meth-
ods would also be good to implement, the
iterative shadow reduction algorithm and the
patch method to complete the list of over-
occlusion reduction methods. They seems to
work a bit better than the ones implemented,
but takes longer time to calculate.

Lastly one would implement global illumi-
nation but one then have to bake/store a point-
cloud with direct illuminations, and there-
fore a color component needs to be added to
the surfel structure. The direct illumination
method needs to be written as well. It is quite
a little step to go from point-based ambient
occlusion to point-based global illumination
but one has to stop somewhere and therefore
it was decided to not implement it for now.

8

References

[1] Per H. Christensen. Point-based global
illumination for movie production. Sig-
graph 2010 course: Global illumination
across industries, Pixar Animation Stu-
dios.

[2] Michael Bunnell. Dynamic ambient occlu-
sion and indirect lighting. GPU Gems 2,
Chapter 14, 2005.

[3] Per H. Christensen. Point-based approx-
imate color bleeding. Pixar technical
memo, Pixar Animation Studios.

[4] Markus Gross. Point-based Graphics. Mor-
gan Kauffmann publishers, 2007.

[5] M.Paulin G. Guennebaud. Efficient screen
space approach for hardware accelerated
surfel rendering. Technical report, CNRS-
IRIT, Universit Paul Sabatier, Toulous,
France.

[6] Greg Turk. Generating textures on arbri-
trary surfaces using reaction-diffusion.
Technical report, University of North Car-
olina at Chapel Hill.

9

